If it's not what You are looking for type in the equation solver your own equation and let us solve it.
500=25e^2
We move all terms to the left:
500-(25e^2)=0
a = -25; b = 0; c = +500;
Δ = b2-4ac
Δ = 02-4·(-25)·500
Δ = 50000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$e_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$e_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{50000}=\sqrt{10000*5}=\sqrt{10000}*\sqrt{5}=100\sqrt{5}$$e_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-100\sqrt{5}}{2*-25}=\frac{0-100\sqrt{5}}{-50} =-\frac{100\sqrt{5}}{-50} =-\frac{2\sqrt{5}}{-1} $$e_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+100\sqrt{5}}{2*-25}=\frac{0+100\sqrt{5}}{-50} =\frac{100\sqrt{5}}{-50} =\frac{2\sqrt{5}}{-1} $
| 6(v+3)=-6v-30 | | 3x−4=2x | | 8x+13=5(x+2) | | (X+2)+2(2x+2)=3(5x-6) | | 8x+13=(x+2) | | 2x^2-3x-6=-3 | | x+55=x+53+82 | | x+55=x+53 | | -2(x+4)=3x-48 | | 7(x+10)=91 | | 17g=19g+10 | | 1=y/9 | | 30/d-2;d=6 | | 40/y=5 | | ∑n=1∞1/(n(n+5)) | | 8-(4x-7)=5(x+6)-2 | | -2x+20=-16+4x | | 3(2x+16)+2(-3x-9)=18 | | 2=y/9 | | (x/3)+(x/(x+2))=0 | | 4x^2+15=103 | | 9=54/y | | .45x=38.70 | | 2.5+x=19.3 | | n^2+6n-45=0 | | 6=y/5 | | 5a+20-6a+1=12 | | -6y+4(y-2)=-4 | | 1=1/y | | p^2+10p-59=9 | | 8/t;t=8 | | 33=-2w+5(w+3) |